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Abstract—Thermoelectric modules (TEMs) are solid state heat 

pumps that utilize the Peltier Effect to transfer heat, creating a 
temperature differential across two ceramic surfaces. Passing 

current through the device causes one side of the TEM to become 

cold while the other side becomes hot. This effect is reversed when 

the current passing through the device is reversed. A single-stage 
TEM can create temperature differentials as high as 70 degrees 

Celsius between the cold surface and hot surface of the TEM. 

These devices have applications where precise temperature 
control is required, high reliability is a factor and/or weight and 

space constraints exist. This paper demonstrates the design and 

implementation of a control system using a bidirectional 
proportional-integral-derivative (PID) controller, capable of both 

actively heating and cooling, which can maintain a setpoint 

temperature as well as compensate for ambient temperature 
disturbances. 

 
Index Terms—Compensation, control system, heat pump, 

Peltier effect, proportional-integral-derivative (PID), solid-state, 

temperature, temperature differential, thermocouple, 
thermoelectric device (TEM). 

I. INTRODUCTION 

HERMOELECTRIC devices (fig. 1) are very interesting 

devices. The idea of a small solid-state device, with no 

moving parts, which can both heat and cool via heat 

transfer, by passing current through the device in one direction 

or another, definitely lends itself as a solution for a variety of 

niche applications requiring such characteristics. However, 

there are some things that need to be considered when 

developing a controller to drive these devices safely and 

efficiently. This paper demonstrates the design and 

implementation of a hardware and firmware solution for a  

bidirectional proportional-integral-derivative (PID) controller 

that can both actively heat and cool and maintain temperature 

stability around a setpoint as well as compensate for ambient 

temperature disturbances.  

 

 
 

 
Fig. 1. Thermoelectric module. 

   II. ANALYSIS/REQUIREMENTS 

   To understand the operational behavior of TEMs, Laird 

Thermal Systems, a leading manufacturer of thermal 

management solutions, and the manufacturer of the TEM that 

was used in the design described in this paper, publishes the 

Thermoelectric Handbook (Laird Thermal Systems, 2020). 

This handbook contains a background on the physics of TEMs, 

the operation of the devices as well as approaches as to how to 

drive them safely and efficiently. After exhaustively reading the 

handbook, it was clear there were a few things that were going 

to need to be addressed specific to the TEM as well as the 

solution in general. 

A. The TEM would require a bidirectional current source 

   TEMs will heat or cool one surface depending on the direction 

of the current through the device. Therefore, a hardware 

mechanism will be required in order to control the direction of 

the current.  

B. TEMs require DC current with little ripple 

   TEMs require a DC current with little to no ripple otherwise 

their operational performance will be degraded as function of 

the ripple (1), where N is a percentage of current ripple, 

expressed as a decimal. Laird Technologies recommends no 

more than 10% ripple.  
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C. Heat pumps require heat exchangers to dissipate the heat 

   TEMs are solid-state heat pumps and as such, require a heat 

exchanger to dissipate the heat in order create higher 

temperature differentials. 

D. TEMs have maximum voltages, maximum currents, and 

maximum temperatures 

   To avoid damage to the TEM, there must be a mechanism to 

limit the maximum voltage,  maximum current, and the 

maximum temperature of the TEM. 

E. The system will require a sensor to read the temperature of 

the TEM 

F. The system will require a user interface  

   The system will need to the ability to allow the user to interact 

with the system and set the requested setpoint temperature as 

well as indicate the setpoint temperature, the control 

temperature and any other information that may be pertinent to 

informing the user of the system’s state. 

III. PROTOTYPE/DESIGN/IMPLEMENTATION 

A. Overview 

   The first step in the process was experimenting with the TEM 

using a bench top power supply. This allowed for getting a feel 

for its operational behavior. It was obvious that a heat 

exchanger was going to be required in order to achieve greater 

temperature differentials of the TEM. Once the ability to 

heat/cool the TEM was established, a temperature sensor was 

required for feedback and a thermistor was chosen for the task. 

In order to drive the TEM with both positive and negative 

currents, an H-bridge configuration of MOSFETs was used. In 

addition to the MOSFETs used in the H-bridge, another 

MOSFET was used to provide linear control of the current 

delivered to the TEM. At this point it was time to design a PID 

controller in Simulink that could interface with an Arduino’s 

hardware. This allowed Simulink to control the heating/cooling 

of the TEM as well as reading the temperature from the 

thermistor. This also allowed for tuning the PID parameters to 

ensure a fast but stable response of the system. Finally, the user 

interface was designed which includes an LCD for display, 

LEDs for system status and a 10-turn potentiometer for 

precisely setting the setpoint temperature over a broad range of 

values. After experimenting with the different components of 

the system, a system block diagram was created (fig. 2). 

 

 
Fig. 2. System Block Diagram. 

B. Mechanical 

   A salvaged heat sink with attached 12V DC fan worked well 

for the heat exchanger. The bottom side of the TEM was 

attached to the top of the heat sink using a homemade thermally 

conductive epoxy consisting of a two-part epoxy doped with 

aluminum oxide. Aluminum oxide is an extremely fine powder 

and is dangerous if inhaled, therefore, a mask and the proper 

precautions need to be taken when handling this powder. This 

ensured good heat transfer from the TEM to the heat sink. The  

heat sink and fan combination would require a base for support 

and also to ensure good air flow. The support base was designed 

in Fusion 360 and printed on a 3D printer (fig. 3). The support 

base was designed with four equally spaced horizontal 5mm 

holes to house LEDs which will be used for indicating the 

different states of the system such as cooling, heating, steady 

state and responding. Finally, a thermistor was attached to the 

top of the TEM, using the same thermally conductive epoxy, to 

measure the temperature for feedback. 

 

 
Fig. 3. Heat sink with TEM, thermistor, fan, and base with LEDs. 

C. Temperature Feedback 

   The thermistor that was used was a 100K BAPI sensor. 

Thermistors are resistors that change their resistance as a 

function of temperature. A typical thermistor output curve is 

non-linear. The datasheet contains a table that maps resistances 

to temperatures. This lookup table could be used in with two 

different approaches. One approach is to use the lookup table 

and simply round up or down depending on what resistance was 

closest to the measured resistance. This approach is not a fully 

accurate, though. A second, and much more accurate approach, 

albeit more complex, is to use the lookup table but instead of 

rounding up or down, use linear interpolation between the 

points. Although either of these approaches could have been 

used, I chose to import the data into excel and curve fit the data 

to a logarithmic function (2). This proved to be the easiest 

approach as well as being sufficiently accurate for this project. 

 

𝑇(𝑟) = −20.64 ∗  ln(r) +  266.37                  (2) 

 

D. Driving the TEM 

   An H-bridge circuit (fig. 4) was chosen to support the ability 

to reverse the current driving the TEM. The H-bridge consists 

of four logic level n-channel MOSFETs with the high-side 

MOSFETs driven by a gate driver to ensure the MOSFETs turn 
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on fully. P-channel MOSFETs could have been used for the 

high-side switching without the use of the gate drivers, 

however, n-channel MOSFETs tend to have lower RDS(on) and 

are therefore more efficient. The H-bridge is controlled via 

digital outputs from an Arduino Uno and care had to be taken 

to ensure both branches of the H-bridge were fully off before 

turning on any single branch on, otherwise a short circuit would 

occur. 

 

 
Fig. 4. H-bridge and series pass transistor. 

   Because the TEM needs to be driven by a DC current source 

with minimum ripple, a power MOSFET attached to a heat sink 

was used. This power MOSFET was operated linearly and 

allowed varying the current delivered to the TEM. This is not 

the most efficient approach, however for this project it will 

suffice.  

   The ATMega328P microcontroller on the Arduino does not 

have any built-in DACs. Therefore, a PWM signal  was used to 

linearly control the power MOSFET. In order to smooth out the 

PWM signal do ensure a DC current source with minimum 

ripple, two cascaded RC filters were used smooth out the PWM 

signal. 

E. Control system 

   Simulink was used initially to control the system. An add-on 

for hardware support for Arduino was installed that allows 

Simulink to control the output pins and read the input pins of 

the Arduino. A model of the system was created (fig. 5) and 

used a PID controller for the control systems strategy. Some 

additional blocks were added for signal conditioning purposes 

for the thermistor temperature sensor. This worked well for the 

intial analysis and tuning of the PID controller but this all had 

to ultimately be implemented in code on the Arduino. 

 

 
Fig. 5. Simulink block diagram. 

   Tuning the PID controller is challenging and requires some 

trial and error. What worked best was to first set the integral and 

derivative terms both to zero. Then adjust the proportional term 

until the temperature approaches its steady value without 

overshooting and without any oscillation. There will be some 

steady error at this point. The next step is to add in some integral 

term. This will eliminate the steady state error. Finally, 

tweaking the derivative and possibly the other terms slightly 

will allow the PID controller to reach steady state very quickly 

and with minimal overshoot and minimal steady state error.  It’s 

important to mention a caveat with the derivative term. If there 

is low level noise in the system, then the deriviatve term can 

cause more harm than good. Therefore, whenever using the 

derivative term be sure to filter the signal using a moving 

average (or filter type of choice) to ensure the low level noise 

is eliminated. The final gain values, after tuning, for the PID 

terms were Kp = 10, Ki = 0.8, and Kd = 10.  

   Once the final system was running entirely on the Arduino, 

the system was hit with an arbitrary step function and the input, 

output and time was logged. This data was imported into 

MATLAB’s System Identification app and MATLAB was then 

able to estimate a system transfer function (3) with an accuracy 

of around 98%. 

 

𝑇(𝑠) =  
40.12𝑠2+173.7𝑠+245.4

𝑠3+1538𝑠2+742𝑠+244.5
                     (3) 

 

   The bode magnitude and phase diagrams for (3) can be seen 

in fig. 7. The root locus and the response plot for (3) can be seen 

in fig. 8. The time domain repsonse plot for (3) can be seen in 

fig. 9 and shows a fast response with some overshoot and no 

steady state error. Rise time was 2.91 seconds, overshoot was 

15.1 % and steady state was reached in 13.3 seconds. The 

response was slightly underdamped with slight overshoot, 

however, this allowed for faster rise and fall times and 

therefore, was an acceptable compromise.  

 

 
Fig. 7. Bode magnitude plot and phase diagram. 
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Fig. 8. Root locus plot. 

 
Fig. 9. Step response. 

F. Human machine interface (HMI) (fig. 10) 

1) 10-Turn potentiometer 

To set the temperature setpoint. 

  

2) Status LEDs 

Four different LEDs were used consisting of a blue 

(cooling), red (heating), green (steady state), and yellow 

(responding). Different color LEDs have different forward 

voltage drops; therefore, each LED required a unique 

current limiting resistor. 

 

3) Liquid Crystal Display (LCD) 

To display the setpoint temperature, the actual temperature, 

the mode, and the steady state status. 

 

 
Fig. 10. System interface. 

G. Power supply rails 

   Three different power rails were required (fig. 11). An 8V 

power supply rail with current limiting was used to power the 

TEM. An 8V to 12V power rail was used to power the heat 

exchanger fan and finally, a 5V power supply rail was used for 

all 5V logic requirements. Linear power supplies were used for 

all of the rails to ensure clean power sources. 

 

 
Fig. 11. Power supplies. 

IV. RESULTS 

   The results of the simulated step response, using the system 

transfer function (3), as identified by the System Identification 

application from the actual control system data, can be seen in 

fig. 12 and fig. 13. The results show a fast response with some 

overshoot and no steady state error. These responses are 

highly correlated to the actual system response which was 

reassuring.  

 

 
Fig. 12. Step response from 25.0° C to 80.0 ° C. 

 
Fig. 13. Step response from 25.0° C to 0.0 ° C. 
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   The system allowed the user to set the temperature setpoint 

via a 10-turn potentiometer to a temperature ranging from 0° C 

to 80° C. The LED indicators and the LCD displayed the status 

of the system as expected with one exception; the serial 

protocol for communicating with the LCD had a bug and every 

so often it would fail, requiring a reset. This occurred 

infrequently and did not affect any of the trials. The system 

quickly tracked, met, and maintained any temperature set via 

the potentiometer as well as compensating for any disturbances. 

A thermal imaging camera was used to ensure the temperatures 

were reasonably accurate and can be seen in fig. 14 and fig. 15. 

 

 
Fig. 14. Step response from ambient to 80.0 ° C (thermal image). 

 
Fig. 15. Step response from ambient C to 0.0 ° C (thermal image). 

 

 

 

 

 

 

 

V. DISCUSSION/CONCLUSION 

A. Improvements 

   Although the design did meet the requirements initially 

defined for the project, there were lessons learned along the 

way and if doing the project over, the following improvements 

could be made. 

 

▪ Use of high frequency PWM with LC filter for efficient 

driving of the TEM 

 

▪ Design and use a PCB 

 

▪ More ergonomic user interface 

 

▪ Ability to manage higher current for greater temperature 

differential 

 

▪ Use of a digital temperature sensor to eliminate noise and 

for greater accuracy 

 

▪ Proper fuses for safety 

 

▪ All voltage rails derived from a single input power source 

 

▪ Add over voltage, over current and over temperature 

protection at the hardware level 
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