
1

Thermoelectric Module Temperature Stability using

Bidirectional Proportional-Integral-Derivative (PID)

Controller (2022)

Sidney Kantor, Electrical Engineering, University of North Dakota, Member, IEEE

Abstract—Thermoelectric modules (TEMs) are solid state heat

pumps that utilize the Peltier Effect to transfer heat, creating a
temperature differential across two ceramic surfaces. Passing

current through the device causes one side of the TEM to become

cold while the other side becomes hot. This effect is reversed when

the current passing through the device is reversed. A single-stage
TEM can create temperature differentials as high as 70 degrees

Celsius between the cold surface and hot surface of the TEM.

These devices have applications where precise temperature
control is required, high reliability is a factor and/or weight and

space constraints exist. This paper demonstrates the design and

implementation of a control system using a bidirectional
proportional-integral-derivative (PID) controller, capable of both

actively heating and cooling, which can maintain a setpoint

temperature as well as compensate for ambient temperature
disturbances.

Index Terms—Compensation, control system, heat pump,

Peltier effect, proportional-integral-derivative (PID), solid-state,

temperature, temperature differential, thermocouple,
thermoelectric device (TEM).

I. INTRODUCTION

HERMOELECTRIC devices (fig. 1) are very interesting

devices. The idea of a small solid-state device, with no

moving parts, which can both heat and cool via heat

transfer, by passing current through the device in one direction

or another, definitely lends itself as a solution for a variety of

niche applications requiring such characteristics. However,

there are some things that need to be considered when

developing a controller to drive these devices safely and

efficiently. This paper demonstrates the design and

implementation of a hardware and firmware solution for a

bidirectional proportional-integral-derivative (PID) controller

that can both actively heat and cool and maintain temperature

stability around a setpoint as well as compensate for ambient

temperature disturbances.

Fig. 1. Thermoelectric module.

 II. ANALYSIS/REQUIREMENTS

 To understand the operational behavior of TEMs, Laird

Thermal Systems, a leading manufacturer of thermal

management solutions, and the manufacturer of the TEM that

was used in the design described in this paper, publishes the

Thermoelectric Handbook (Laird Thermal Systems, 2020).

This handbook contains a background on the physics of TEMs,

the operation of the devices as well as approaches as to how to

drive them safely and efficiently. After exhaustively reading the

handbook, it was clear there were a few things that were going

to need to be addressed specific to the TEM as well as the

solution in general.

A. The TEM would require a bidirectional current source

 TEMs will heat or cool one surface depending on the direction

of the current through the device. Therefore, a hardware

mechanism will be required in order to control the direction of

the current.

B. TEMs require DC current with little ripple

 TEMs require a DC current with little to no ripple otherwise

their operational performance will be degraded as function of

the ripple (1), where N is a percentage of current ripple,

expressed as a decimal. Laird Technologies recommends no

more than 10% ripple.

∆𝑇

∆𝑇𝑚𝑎𝑥
=

1

(1+𝑁2)
 (1)

T

2

C. Heat pumps require heat exchangers to dissipate the heat

 TEMs are solid-state heat pumps and as such, require a heat

exchanger to dissipate the heat in order create higher

temperature differentials.

D. TEMs have maximum voltages, maximum currents, and

maximum temperatures

 To avoid damage to the TEM, there must be a mechanism to

limit the maximum voltage, maximum current, and the

maximum temperature of the TEM.

E. The system will require a sensor to read the temperature of

the TEM

F. The system will require a user interface

 The system will need to the ability to allow the user to interact

with the system and set the requested setpoint temperature as

well as indicate the setpoint temperature, the control

temperature and any other information that may be pertinent to

informing the user of the system’s state.

III. PROTOTYPE/DESIGN/IMPLEMENTATION

A. Overview

 The first step in the process was experimenting with the TEM

using a bench top power supply. This allowed for getting a feel

for its operational behavior. It was obvious that a heat

exchanger was going to be required in order to achieve greater

temperature differentials of the TEM. Once the ability to

heat/cool the TEM was established, a temperature sensor was

required for feedback and a thermistor was chosen for the task.

In order to drive the TEM with both positive and negative

currents, an H-bridge configuration of MOSFETs was used. In

addition to the MOSFETs used in the H-bridge, another

MOSFET was used to provide linear control of the current

delivered to the TEM. At this point it was time to design a PID

controller in Simulink that could interface with an Arduino’s

hardware. This allowed Simulink to control the heating/cooling

of the TEM as well as reading the temperature from the

thermistor. This also allowed for tuning the PID parameters to

ensure a fast but stable response of the system. Finally, the user

interface was designed which includes an LCD for display,

LEDs for system status and a 10-turn potentiometer for

precisely setting the setpoint temperature over a broad range of

values. After experimenting with the different components of

the system, a system block diagram was created (fig. 2).

Fig. 2. System Block Diagram.

B. Mechanical

 A salvaged heat sink with attached 12V DC fan worked well

for the heat exchanger. The bottom side of the TEM was

attached to the top of the heat sink using a homemade thermally

conductive epoxy consisting of a two-part epoxy doped with

aluminum oxide. Aluminum oxide is an extremely fine powder

and is dangerous if inhaled, therefore, a mask and the proper

precautions need to be taken when handling this powder. This

ensured good heat transfer from the TEM to the heat sink. The

heat sink and fan combination would require a base for support

and also to ensure good air flow. The support base was designed

in Fusion 360 and printed on a 3D printer (fig. 3). The support

base was designed with four equally spaced horizontal 5mm

holes to house LEDs which will be used for indicating the

different states of the system such as cooling, heating, steady

state and responding. Finally, a thermistor was attached to the

top of the TEM, using the same thermally conductive epoxy, to

measure the temperature for feedback.

Fig. 3. Heat sink with TEM, thermistor, fan, and base with LEDs.

C. Temperature Feedback

 The thermistor that was used was a 100K BAPI sensor.

Thermistors are resistors that change their resistance as a

function of temperature. A typical thermistor output curve is

non-linear. The datasheet contains a table that maps resistances

to temperatures. This lookup table could be used in with two

different approaches. One approach is to use the lookup table

and simply round up or down depending on what resistance was

closest to the measured resistance. This approach is not a fully

accurate, though. A second, and much more accurate approach,

albeit more complex, is to use the lookup table but instead of

rounding up or down, use linear interpolation between the

points. Although either of these approaches could have been

used, I chose to import the data into excel and curve fit the data

to a logarithmic function (2). This proved to be the easiest

approach as well as being sufficiently accurate for this project.

𝑇(𝑟) = −20.64 ∗ ln(r) + 266.37 (2)

D. Driving the TEM

 An H-bridge circuit (fig. 4) was chosen to support the ability

to reverse the current driving the TEM. The H-bridge consists

of four logic level n-channel MOSFETs with the high-side

MOSFETs driven by a gate driver to ensure the MOSFETs turn

3

on fully. P-channel MOSFETs could have been used for the

high-side switching without the use of the gate drivers,

however, n-channel MOSFETs tend to have lower RDS(on) and

are therefore more efficient. The H-bridge is controlled via

digital outputs from an Arduino Uno and care had to be taken

to ensure both branches of the H-bridge were fully off before

turning on any single branch on, otherwise a short circuit would

occur.

Fig. 4. H-bridge and series pass transistor.

 Because the TEM needs to be driven by a DC current source

with minimum ripple, a power MOSFET attached to a heat sink

was used. This power MOSFET was operated linearly and

allowed varying the current delivered to the TEM. This is not

the most efficient approach, however for this project it will

suffice.

 The ATMega328P microcontroller on the Arduino does not

have any built-in DACs. Therefore, a PWM signal was used to

linearly control the power MOSFET. In order to smooth out the

PWM signal do ensure a DC current source with minimum

ripple, two cascaded RC filters were used smooth out the PWM

signal.

E. Control system

 Simulink was used initially to control the system. An add-on

for hardware support for Arduino was installed that allows

Simulink to control the output pins and read the input pins of

the Arduino. A model of the system was created (fig. 5) and

used a PID controller for the control systems strategy. Some

additional blocks were added for signal conditioning purposes

for the thermistor temperature sensor. This worked well for the

intial analysis and tuning of the PID controller but this all had

to ultimately be implemented in code on the Arduino.

Fig. 5. Simulink block diagram.

 Tuning the PID controller is challenging and requires some

trial and error. What worked best was to first set the integral and

derivative terms both to zero. Then adjust the proportional term

until the temperature approaches its steady value without

overshooting and without any oscillation. There will be some

steady error at this point. The next step is to add in some integral

term. This will eliminate the steady state error. Finally,

tweaking the derivative and possibly the other terms slightly

will allow the PID controller to reach steady state very quickly

and with minimal overshoot and minimal steady state error. It’s

important to mention a caveat with the derivative term. If there

is low level noise in the system, then the deriviatve term can

cause more harm than good. Therefore, whenever using the

derivative term be sure to filter the signal using a moving

average (or filter type of choice) to ensure the low level noise

is eliminated. The final gain values, after tuning, for the PID

terms were Kp = 10, Ki = 0.8, and Kd = 10.

 Once the final system was running entirely on the Arduino,

the system was hit with an arbitrary step function and the input,

output and time was logged. This data was imported into

MATLAB’s System Identification app and MATLAB was then

able to estimate a system transfer function (3) with an accuracy

of around 98%.

𝑇(𝑠) =
40.12𝑠2+173.7𝑠+245.4

𝑠3+1538𝑠2+742𝑠+244.5
 (3)

 The bode magnitude and phase diagrams for (3) can be seen

in fig. 7. The root locus and the response plot for (3) can be seen

in fig. 8. The time domain repsonse plot for (3) can be seen in

fig. 9 and shows a fast response with some overshoot and no

steady state error. Rise time was 2.91 seconds, overshoot was

15.1 % and steady state was reached in 13.3 seconds. The

response was slightly underdamped with slight overshoot,

however, this allowed for faster rise and fall times and

therefore, was an acceptable compromise.

Fig. 7. Bode magnitude plot and phase diagram.

4

Fig. 8. Root locus plot.

Fig. 9. Step response.

F. Human machine interface (HMI) (fig. 10)

1) 10-Turn potentiometer

To set the temperature setpoint.

2) Status LEDs

Four different LEDs were used consisting of a blue

(cooling), red (heating), green (steady state), and yellow

(responding). Different color LEDs have different forward

voltage drops; therefore, each LED required a unique

current limiting resistor.

3) Liquid Crystal Display (LCD)

To display the setpoint temperature, the actual temperature,

the mode, and the steady state status.

Fig. 10. System interface.

G. Power supply rails

 Three different power rails were required (fig. 11). An 8V

power supply rail with current limiting was used to power the

TEM. An 8V to 12V power rail was used to power the heat

exchanger fan and finally, a 5V power supply rail was used for

all 5V logic requirements. Linear power supplies were used for

all of the rails to ensure clean power sources.

Fig. 11. Power supplies.

IV. RESULTS

 The results of the simulated step response, using the system

transfer function (3), as identified by the System Identification

application from the actual control system data, can be seen in

fig. 12 and fig. 13. The results show a fast response with some

overshoot and no steady state error. These responses are

highly correlated to the actual system response which was

reassuring.

Fig. 12. Step response from 25.0° C to 80.0 ° C.

Fig. 13. Step response from 25.0° C to 0.0 ° C.

5

 The system allowed the user to set the temperature setpoint

via a 10-turn potentiometer to a temperature ranging from 0° C

to 80° C. The LED indicators and the LCD displayed the status

of the system as expected with one exception; the serial

protocol for communicating with the LCD had a bug and every

so often it would fail, requiring a reset. This occurred

infrequently and did not affect any of the trials. The system

quickly tracked, met, and maintained any temperature set via

the potentiometer as well as compensating for any disturbances.

A thermal imaging camera was used to ensure the temperatures

were reasonably accurate and can be seen in fig. 14 and fig. 15.

Fig. 14. Step response from ambient to 80.0 ° C (thermal image).

Fig. 15. Step response from ambient C to 0.0 ° C (thermal image).

V. DISCUSSION/CONCLUSION

A. Improvements

 Although the design did meet the requirements initially

defined for the project, there were lessons learned along the

way and if doing the project over, the following improvements

could be made.

▪ Use of high frequency PWM with LC filter for efficient

driving of the TEM

▪ Design and use a PCB

▪ More ergonomic user interface

▪ Ability to manage higher current for greater temperature

differential

▪ Use of a digital temperature sensor to eliminate noise and

for greater accuracy

▪ Proper fuses for safety

▪ All voltage rails derived from a single input power source

▪ Add over voltage, over current and over temperature

protection at the hardware level

REFERENCES

[1] Thermoelectric Handbook, Laird Thermal Systems, Morrisville, NC,

USA, 2020.

Sidney Kantor has over 25 years’

experience in the software industry as a

software engineer. He held a role at his

current company working in a research and

development position, investigating the

potential application of artificial

intelligence within the context of the

company’s needs. Within this role he

implemented a neural network using Python

and Jupyter Notebook using only the native capabilities of the

language. The neural network was trained on image recognition

and was able to accurately identify handwritten numerical

values zero through nine, regardless of the orientation. He is

currently studying towards earning a Bachelor of Science (B.S)

in electrical engineering from the University of North Dakota.

